

On the 30th anniversary of EuroCOW: where does sensor fusion go?

European Calibration and Orientation Workshop (EuroCOW) 2025 I.Colomina

history & prehistory of the EuroCOWs

dedicated to workshop organisers...

Popular wisdom saying in Spanish-speaking countries.

"Hay tres cosas que cada persona debería hacer durante su vida:

- 1. plantar un árbol,
- 2. tener un hijo y
- 3. escribir un libro."

Tres Héroes, José Martí (1853-1895)

"There are three things every person should do during their life::

- 1. plant a tree,
- 2. have a child, and
- 3. write a book."

dedicated to workshop organisers...

"There are four things every person should do during their life::

- 1. plant a tree,
- 2. have a child,
- 3. write a book, and
- 4. organise a conference."

everything started there and then...

- ISPRS 1992-1996 Commission III "Theory and Algorithms" (H. Ebner)
- ISPRS Working Group 3.1 "Integrated Sensor Orientation" (I.Colomina, J. Lucas)
- Workshop
 - Barcelona 1995-09-04/08
 - "Integrated Sensor Orientation: Theory, Algorithms, and Systems"
 - 95 participants, 14 countries, 4 continents
 - Co-organised by FIG, IAG, ISPRS, IUSM always wanted to avoid making it too-photogrammetric...

INSTITUT CARTOGRÀFIC DE CATALUNYA

ge_lø_lnumerics

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 6/ 31

the context in 1995

- 1992-1996 ISPRS WG III.2

"Geometric-Radiometric Models & Object Reconstruction" (K. Torlegard, W.Förtsner)

- 1995 mobile mapping concept just matured
 [1st] Mobile Mapping Symposium (Center for Mapping, OSU, Columbus, OH, USA)
- Amazon and eBay launched
- Windows 95 launched

ge_lØ_lnumerics

- Just GPS (with SA) and GLONASS (SA disabled in 2000-05-01)
- PPP not yet invented (1997)
- John Deere's real-time PPP (StarFire) not yet deployed (1999)
- David Lowe's SIFT not yet invented (1999)
- SLAM was already established in the robotics community

The EuroCOW series

- 1995 Barcelona 1995-09-04/08 ISPRS WG 3.1
- 1999 Barcelona 1999-11-25/26 ISPRS WG 3.1 "Direct vs. indirect methods for sensor orientation"
- 2003 Castelldefels 2003-09-22/23 ISPRS WG 1.5
 "Theory, Technology & Realities Of Inertial/GPS/Sensor Orientation"
- 2006 Castelldefels 2006-01-25/27 together with EuroSDR
- 2008 Castelldefels 2008-01-30/02-01
- 2010 Castelldefels 2010-02-10/12
- 2012 Castelldefels 2012-02-08/10
- 2014 Castelldefels 2014-02-12/14
- 2016 Lausanne 2016-02-10/12
- 2019 Entschede 2019-06-13/14

ge_lØ_lnumerics

- 2025 Warsaw 2025-06-16/18 WG 1.6 (K. Bakula, G.Zhang, H. Meißner)

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 8/ 31

The EuroCOW series

the essential truth is that everything started

when someone decided to put a GPS receiver on a photogrammetric aircraft.

30 years evolution

everything started there and then...

- 1990s
 - laser scanning (1991)
 - Internet boom
- 2000s
 - drones
 - GIS software emergence
 - connectivity and mobile revolution: smartphones
 - consumer technology for professional applications
 - Galileo and BDS
- 2010s
 - AI & machine learning
 - autonomous vehicles
- 2020s

ge_lØ_lnumerics

- boom of AI & machine learning

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw \mid 0.0 \mid 2025-06-16 \mid 11/31

on today & tomorrow

ge_lØ_lnumerics

potential and limits of satellite radionavigation occlusions, multipath & NLOS reflexions

- GNSS signals can be blocked and reflected by nearby objects: non-line-of-sight reflection (NLOS-R).
- They can also be reflected by the ground and by water: multipath interference (MP-I).
- MP-I & NLOS-R are the dominant source GNSS positioning errors in dense urban environments.
- In the GNSS community it is commonplace to classify NLOS-R as "multipath." But...

NLOS-R \neq MP-I (reflective and diffractive)

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw \mid 0.0 \mid 2025-06-16 \mid 13/ 31

potential and limits of satellite radionavigation

jamming & spoofing attacks

- 900 flights a day on average are now encountering GNSS Spoofing (ObsGroup)

geløinumerics On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 14/31

ge_lø_lnumerics

potential and limits of satellite radionavigation

the inconvenient truth of autonomous navigation

- autonomous vehicles (AVs) make a rather limited use of GNSS

- what for GNSS is a nightmare [for the time being], for SLAM is perfect

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 15/ 31

potential and limits of satellite radionavigation incremental improvement of GNSS

- more satellites (new constellations)
 - Galileo (27 operational satellites)
 - BDS (\approx 45, GEO, IGSO & MEO)
- better signals, e.g. E5 AltBOC

ge_lø_lnumerics

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw \mid 0.0 \mid 2025-06-16 \mid 16/ 31

potential and limits of satellite radionavigation

incremental improvement of GNSS

- new and better services
 - High-Accuracy Service (HAS) on top of the Open Service (OS) for GPS and Galileo
 - $\sigma_H \approx 10 cm$, $\sigma_h \approx 20 cm$
 - orbit and clock corrections, satellite ranging biases (SL1)
 - regional atmospheric corrections (SL2)

potential and limits of satellite radionavigation new GNSS concepts

- LEO-based GNSS as a complement to [MEO-based] GNSS: LEOPNT
- PNT-dedicated LEO constellations (LEO.PNT)
 - private, e.g. PULSAR (Xona Space Systems)
 - L-band, S-band, C-band

ge_lØ_lnumerics

planned: 250-300 satellites, 500 kE/satellite, 5-year lifespan

- public, e.g. ESA initiative (2 \times 78.4 ME) L-band, S-band, C-band

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 18/ 31

potential and limits of inertial navigation

essential limitations of technology

as we know

- sensing errors that translate into drift

even perfect inertial sensors do not translate into perfect navigation

- sensor installation errors
- initial position, velocity and attitude errors
- gravity model errors
- vertical channel (height) instability

potential and limits of inertial navigation

progress in low- and high-end inertial sensing

batch production of E-level IMUs

- low-end tactical-grade IMUs

quantum inertial sensing

- cold-atom atomic interferometry [6, 7]
- thermal-atom interferometry [1]
- -NV centers

ge_lØ_lnumerics

- miniaturisation of quantum angular rate sensors [2]
- almost no turn-on biases (TOBs), very low in-run bias stability (IRBS) 0.001 deg/h
- angular random walk (ARW) 0.0008 deg/ \sqrt{h}
- limited bandwidth \rightarrow hybridisation with conventional IMUs

On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw \mid 0.0 \mid 2025-06-16 \mid 20/ 31

potential and limits of inertial navigation TIMU

future time and inertial measurement unit (TIMU)

- chip-scale atomic clock (CSAC)
- IMU

all what we need is to calibrate them from time to time

accurate, assured & affordable (A³) PNT the Holy Grail of PNT

the obvious requirement

- accurate (depends on application)
- assured (available at any time)
- affordable

originally developed for aviation, it begins to matter in other applications

- urban air mobility (taxi drones, drone delivery)
- autonomous vehicles

ge_lø_lnumerics

- any robotic application critically dependent on navigation

accurate, assured & affordable (A³) PNT the Holy Grail of PNT

the not so obvious requirements

- accurate (depends on application)... with some probability over time periods
- assured (available at any time)... with some probability over time periods
- affordable

originally developed for aviation, it begins to matter in other applications

- urban air mobility (taxi drones, drone delivery)
- autonomous vehicles
- any robotic application critically dependent on navigation

A³ **PNT** example: **RNP** for **CAT I**

CAT I: operation of precision instrument approach and landing

	accuracy		integrity					
operation	e-n	d	IR	HAL	VAL	TTA	continuity risk	availability
units	m	m	-	m	m	S	-	-
CAT 1	16	≈ 5	2 x 10 ⁻⁷	40	pprox 15	6	$pprox$ 5 x 10 $^{-7}/$ 15 s	≈ 0.9999

e-n: east-north. d: down.

References for required navigation performance (RNP) specifications: [3], [4], [5]

geløinumerics On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 24/31

A³ **PNT example: RNP for CAT I** assumptions

– signal-in-space arrives "well" (no multipath, no NLOS reflexions) "well" means $p_s = 10^{-5}$ error probability

 $p_{emd} = p_s \times p_{md}$

- GNSS receiver works (based on long MTBF)
- IMU works (based on long MTBF)

A³ **PNT** example: **RNP** for a multi-sensor-based **AV** assumptions?

- $-p_s$? depends on the environment
- what about the other a priori p_s
- what about p_s of visual and lidar sensors?
- what about outlier detection for the complex multi-sensor system?
- what about outlier detection of dynamic measurements? e.g., DMI, VO, IMU,...
- what about the impact of non-detected outliers in accuracy estimates?

realistic integrity

A³ **PNT** example: the EGENIOUSS project

EGNSS-based Visual Localisation to enable AAA-PNT in small devices & applications

The goal of EGENIOUSS is to provide **affordable**, **accurate and assured positioning**, navigation and timing (AAA-PNT) for any modern computing **GNSS**-compatible device with a **camera** by a novel base technology: a hybrid EGNSS-based **Visual Localisation (VL) cloudbased service** for accurate (< 10 cm RMS) and reliable (99.9 % availability) absolute positioning with the aim for global scalability and high application-oriented transferability.

geløinumerics On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 28/31

A³ PNT example: GAMMS "robots mapping for robots" Galileo/GNSS-based Autonomous Mobile Mapping System

geløinumerics On the 30th anniversary of EuroCOW: where does sensor fusion go?, EuroSDR and ISPRS, Warsaw | 0.0 | 2025-06-16 | 29/31

final words

references

- [1] C.L. Garrido Alzar. "Atom interferometers warm up". In: *Physics* 10 (2017), p. 2. DOI: 10.1103/Physics.10.41.
- C.L. Garrido Alzar. "Compact chip-scale guided cold atom gyrometers for inertial navigation: enabling technologies and design study". In: AVS Quantum Science 1.1 (2019), pp. 014702–1–014702–18. DOI: 10.1116/1.5120348.
- [3] GEAS Panel. GNSS evolutionary architecture study, phase II report. Tech. rep. FAA, Feb. 2010, p. 121.
- [4] ICAO. Aeronautical Telecommunications. Annex 10 to the Convention on International Civil Aviation. Volume I Radio Navigation Aids. International Standards and Recommended Practices. 6th edition. Montréal, Quebec, Canada: International Civil Aviation Authority, July 2006, p. 574.
- [5] ICAO. Performance-based Navigation (PBN) Manual. International standard 9613. Montréal, Quebec, Canada: International Civil Aviation Authority, 2008, p. 294.
- [6] M. Travagnin. Cold atom interferometry for inertial navigation sensors. Technology assessment: space and defence applications. Tech. rep. EUR 30492 EN / JRC122785. Luxembourg: Publications Office of the European Union, Dec. 2020. DOI: 10.2760/237221.
- [7] M. Travagnin. Cold atom interferometry sensors: physics and technologies. A scientific background for EU policymaking. Tech. rep. EUR 30289 EN / JRC121223. Luxembourg: Publications Office of the European Union, July 2020. DOI: 10.2760/315209.