

Faculty of Geodesy and Cartography Warsaw University of Technology

Assessment of UAV image quality in terms of optical resolution

Paulina Zachar Łukasz Wilk Magdalena Pilarska-Mazurek Henry Meißner Wojciech Ostrowski

EuroCOW - EUROPEAN WORKSHOP ON CALIBRATION AND ORIENTATION IN REMOTE SENSING 16-18 June 2025, Warsaw POLAND

Evaluate the quality of images from different UAV sensors in terms of their optical resolution

Motivation

0

UAVs have successfully become part of modern photogrammetry and remote sensing

Motivation

UAVs have successfully become part of modern photogrammetry and remote sensing

UAV images are acquired with sensors of varying quality

Motivation

Motivation

UAVs have successfully become part of modern photogrammetry and remote sensing

UAV images are acquired with sensors of varying quality

ISO value is generally used to compensate for poor light conditions

Image sharpness vary with altitude and environmental conditions

Assessment of radiometric image quality

- Sharpness
- Contrast
- Resolution

The main indicators of image quality are the signal-to-noise ratio and the radiometric accuracy and stability of the sensor.

Assessment of radiometric image quality - measures

Mavic 3E

Matrice 4E

Phantom 4 RTK

Zenmuse P1

Camera	Mavic 3E	Matrice 4E	Phantom 4 RTK	Zenmuse P1
Pixel size	3.3 µm	3.3 µm	2.4 µm	4.4 µm
Focal length	12.29 mm	12.29 mm	8.8 mm	35 mm
FOV	84°	84°	84°	63.3°
Resolution	5280)×3956	5472×3648	8192×5460
Shutter type	Mechanical shutter			

Expreriments

- tests with Siemens star
- test field for UAVs in Józefosław near Warsaw
- four different sensors

- flight in various lighting and weather conditions, and at different altitudes
- evaluation of the optical resolution using the software ResolvingPower developed by The German Aerospace Center (DLR)

Resolving Power

Expreriments

Influence of flight altitude on optical resolution

Influence of lighting conditions Analysis of point clouds from dense image matching

Curbicold (2025

Expreriments

Influence of flight altitude on optical resolution

Influence of lighting conditions Analysis of point clouds from dense mage matching

Expreriments

Dependence of MTF10 value on flight altitude and ISO parameter

Expreriments

The values of MTF10 for Mavic 3E and Matrice 4E in relation to the flight altitudes

Expreriments

Dependence of MTF10 value on flight altitude and ISO parameter for DJI Zenmuse P1.

Warsaw University of Technology

Expreriments

Example of Siemens star on images from P1 camera (40, 60 and 80 m AGL).

Camera	Flight Height	MTF10 (AVG	GRD	GSD [cm]	ISO	Time
DJI Zenmuse P1	40m	0,976	0,51	0,50	1130	03:30 p.m.
DJI Zenmuse P1	60m	0,779	0,96	0,75	1430	03:30 p.m.
DJI Zenmuse P1	80m	0,485	2,06	1,00	1600	03:30 p.m.
P4_RTK	36m	0,760	1,31	1,00	800	02:10 p.m.
P4_RTK	36m	0,949	1,05	1,00	800	03:20 p.m.
P4_RTK	55m	0,934	1,61	1,50	800	02:10 p.m.
P4_RTK	55m	1,003	1,50	1,50	800	03:20 p.m.
P4_RTK	91m	0,778	3,21	2,50	800	02:10 p.m.
P4_RTK	91m	0,971	2,58	2,50	800	03:20 p.m.
M3E	60m	0,944	1,70	1,60	100	11:30 a.m.
M3E	47m	0,959	1,30	1,25	100	11:30 a.m.
M3E	39m	0,897	1,17	1,05	100	11:30 a.m.
M3E	33m	0,859	1,02	0,88	100	11:30 a.m.
M3E	24m	0,806	0,79	0,64	100	11:30 a.m.
M3E	18m	0,667	0,72	0,48	100	11:30 a.m.
M3E	11m	0,706	0,41	0,29	100	11:30 a.m.
Matrice4	90m	1,134	2,14	2,42	120	9 a.m.
Matrice4	80m	1,078	2,00	2,15	120	9 a.m.
Matrice4	60m	1,112	1,45	1,61	120	9 a.m.
Matrice4	40m	1,105	0,97	1,07	120	9 a.m.
Matrice4	20m	1,098	0,49	0,54	120	9 a.m.
Matrice4	10m	1,034	0,26	0,27	120	9 a.m.

Expreriments

Influence of flight altitude on optical resolution

Influence of lighting conditions Analysis of point clouds from dense mage matching

Expreriments

The values of **MTF10** in relation to the distance from the image centre for two flights performed at different times

Mavic 3E

Assessment of UAV image quality in terms of optical resolution

Expreriments

The values of **GRD** in relation to the distance from the image centre for two flights performed at different times

Expreriments

The values of MTF10 in relation to the distance from the image centre for flights performed

Phantom 4 RTK

Assessment of UAV image quality in terms of optical resolution

The values of **GRD** in relation to the distance from the image centre for flights performed

Curocolo (2025

Expreriments

The values of **MTF10** in relation to the distance from the image centre for flights performed

Expreriments

The values of **GRD** in relation to the distance from the image centre for flights performed

CURDICUL 2025

Expreriments

Influence of flight altitude on optical resolution

Influence of lighting conditions Analysis of point clouds from dense image matching

Warsaw University of Technology

Sensor	ISO	Н	GRD avg	MTF avg	Object 1	Object 2		
M3E	400	13:30	1,14	0,897				
M3E	800	14:40	1,31	0,814				
P4 RTK	400	13:50	1,44	0,712		6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00		
P4 RTK	1600	15:00	1,46	0,699				
P4 RTK	3200	15:15	1,55	0,663				
M300 P1	1800	12:55	1,62	0,627		9.000 6.00 6.00 6.00 6.00 6.00 6.00 6.00		

M300 P1	400	13:05	1,20	0,838	
M300_P1	400	14:00	1,21	0,803	427 635 639 639 639 6477 639 6477 639 6477 639 6477 639 6477 6477 6477 6477 6477 6477 6477 647
M300_P1	800	14:30	1,22	0,830	
M300_P1	800	14:50	1,26	0,804	
M300_P1	1600	14:50	1,25	0,807	
M300_P1	1600	15:15	1,36	0,744	
M300_P1	3200	15:20	1,31	0,768	

A decrease in optical quality with distance from the camera's optical axis was observed for all sensors tested

MTF10 and GRD get worse the farther away from the center of the image Results for Matrice 4E may suggest that some additional sharpening filter has been applied to the images by the camera on-board image processor

Choosing the optimal photographic time has a huge impact on the optical resolution of the images An increase in ISO leads to an increase in image graininess, which negatively affects MTF10 and GRD values

The image-derived 3D reconstruction deteriorates in quality as a result of increased image noise

Thank you!

Paulina Zachar

paulina.zachar@pw.edu.pl