

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration

Antoni Rzonca

Lidargrammetry

- 1. Genesis: Stereoplotting of LiDAR data
- 2. Vertical accuracy enhancement of LiDAR data
- 3. Vertical and horizontal accuracy enhancement of LiDAR data
- 4. Vertical and horizontal accuracy enhancement of LiDAR and RGB/CIR data

- 1. M. Brooks, B. Herman, M.F. Lidargrammetry. 2005.
- 2. Ward, D. Lidargrammetry. 2006.
- 3. Smith, D. 2013 WASHINGTON GIS CONFERENCE Lidargrammetry: Using 3D Stereo Photogrammetry for Lidar Quality Control and Feature Extraction. 2013.
- 4. Fragkos, P.; Ioannidis, C. Assessment of Lidargrammetry for Spatial Data Extraction. Fourth Int. Conf. Remote Sens. Geoinf. Environ. 2016, 9688, 96881L, doi:10.1117/12.2240653.
- 5. Rodríguez-Cielos, R.; Galán-García, J.L.; Padilla-Domínguez, Y.; Rodríguez-Cielos, P.; Bello-Patricio, A.B.; López-Medina, J.A. LiDARgrammetry: A New Method for Generating Synthetic Stereoscopic Products from Digital Elevation Models. Appl. Sci. 2017, 7, doi:10.3390/app7090906.

3

1. Lidargrammetry – genesis

Atturaif Project, Ad-Diriyyah, Riyad, Saudi Arabia, 2006/2007

1. Lidargrammetry – genesis

5

1. Lidargrammetry – genesis

agh.edu.pl

Majek K., Rzonca A., 2016 - *Lidarometry* as a Variant of Integration of Photogrammetric and Laser Scanning Data (Lidarometria jako wariant integracji danych fotogrametrycznych oraz skaningowych), MAM 2016 nr 08, s. 268-273

PyLiGram research tool since 2022 with Mariusz Twardowski, PhD Eng.

agh.edu.pl

Lidargrammetry

- 1. Genesis: Stereoplotting of LiDAR data
- 2. Vertical accuracy enhancement of LiDAR data
- 3. Vertical and horizontal accuracy enhancement of LiDAR data
- 4. Vertical and horizontal accuracy enhancement of LiDAR and RGB/CIR data

2. Vertical accuracy enhancement of LiDAR data

Rzonca A., Twardowski M., 2022, *The lidargrammetric model deformation method for altimetric UAV-ALS data enhancement*, Remote Sensing — 2022 — vol. 14 iss. 24 art. no. 6391, s. 1-17

2. Vertical accuracy enhancement of LiDAR data

Rzonca A., Twardowski M., 2022, *The lidargrammetric model deformation method for altimetric UAV-ALS data enhancement*, Remote Sensing — 2022 — vol. 14 iss. 24 art. no. 6391, s. 1-17

agh.edu.pl

Lidargrammetry

- 1. Genesis: Stereoplotting of LiDAR data
- 2. Vertical accuracy enhancement of LiDAR data
- 3. Vertical and horizontal accuracy enhancement of LiDAR data
- 4. Vertical and horizontal accuracy enhancement of LiDAR and RGB/CIR data

Rzonca A., Twardowski M., One-step enhancement method of data registration based on the lidargrammetric approach; in review;

Rzonca A., Twardowski M., One-step enhancement method of data registration based on the lidargrammetric approach; in review;

Rzonca A., Twardowski M., One-step enhancement method of data registration based on the lidargrammetric approach; in review;

Pargieła K., Rzonca A., Twardowski M., 2023, *The utilization of synthetic and semisynthetic point clouds and images for testing novel approaches for correcting lidar*, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. -2023 - vol. 48-1/W3-2023, s. 145–151

Rzonca A., Twardowski M., One-step enhancement method of data registration based on the lidargrammetric approach; in review;

a) synthetic data (Biskupice test field)

b) semisynthetic data

(Krakow Center test field)

c) real data (Wola Batorska test field)

Rzonca A., Twardowski M., One-step enhancement method of data registration based on the lidargrammetric approach; in review;

Results:

Data	Processing	RMSE					MAX VALUES				
		X [m]	Y [m]	Z [m]	XY [m]	XYZ [m]	X [m]	Y [m]	Z [m]	XY [m]	XYZ [m]
Synthetic	Before	0,267	0,263	0,359	0,377	0,522	0,648	0,637	1,083	1,017	1,636
	After	0,007	0,010	0,022	0,012	0,026	0,057	0,069	0,174	0,111	0,223
Semi-synthetic	Before	0,304	0,314	0,343	0,438	0,560	0,454	0,536	0,515	0,692	0,910
	After	0,014	0,035	0,026	0,038	0,046	0,053	0,076	0,070	0,162	0,196
Real	Before	0,252	0,241	0,322	0,355	0,480	0,543	0,482	0,608	0,609	0,934
	After	0,002	0,004	0,003	0,004	0,005	0,004	0,01	0,009	0,011	0,014

Lidargrammetry

- 1. Genesis: Stereoplotting of LiDAR data
- 2. Vertical accuracy enhancement of LiDAR data
- 3. Vertical and horizontal accuracy enhancement of LiDAR data
- 4. Vertical and horizontal accuracy enhancement of LiDAR and RGB/CIR data:
 - 4.1. Co-matching
 - 4.2. Co-adjustment

Kraków testfield GSD=15cm ; density 10cm Intensity

agh.edu.pl

Kraków testfield GSD=15cm ; density 10cm Intensity

Loosdorf testfield GSD=7,4cm; density 3cm NIR

Loosdorf testfield GSD=7,4cm; density 3cm NIR

Rzonca A., Twardowski M., 2025, *PyLiGram – Research Application for Lidar Data Processing Based on Photogrammetric Methods*; Geomatics and Environmental Engineering (in printing)

agh.edu

Rzonca A, Twardowski M., 2025, *Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration*, EuroCOW 2025, Warszawa

Deep Image Matching 3DOM FBK Trento, Italy

Elisa Mariarosaria Farella Luca Morelli Fabio Remondino

SUPERPOINT+LIGHTGLUE

Rzonca A, Twardowski M., 2025, *Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration*, EuroCOW 2025, Warszawa

Graz (block):

- GSD 5cm
- Density 13cm
- 3 strips of 10 photos each
- #images: 60

Loosdorf (corridor):

- GSD 8cm
- Density 25cm
- 1 strip of 19 photos
- #images: 37

GNSS signal jamming

Rzonca A, Twardowski M., 2025, *Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration*, EuroCOW 2025, Warszawa

Graz: GSD 5cm Density 13cm Loosdorf: GSD 8cm Density 25cm

Rzonca A, Twardowski M., 2025, *Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration*, EuroCOW 2025, Warszawa

Graz: GSD 5cm Density 13cm Loosdorf: GSD 8cm Density 25cm

5. Conclusions

- Quality of the synthetic images should be **improved** (adaptive interpolation, super resolution, inpainting,...)
- RMSEs of GCPs are bigger than GSD but smaller than mean density.
- Precise co-matching is possible by **deep image matching** methods
- The level of enhancement depends on **homogeneity** of the LiDAR data...
- ...and ratio GSD/density

•••

- ...
- Proved usefulness of old pixel-point abstractive idea (unique lidar point identifiers)
- Co-adjustment is possible in **several variants** according to:
 - □ Weighting/fixing of the knowns/estimated values
 - □ Number and distribution of GCPs/ChPs
- Presented process leads to **homogeneous accuracy** of the data
- Lidargammetry in **future research**: densifing point cloud, system calibration, oblique images co-matching

Lidargrammetric co-matching and co-adjustment – a new method of photogrammetric and LiDAR data integration

Thank you!

Antoni Rzonca

agh.edu.pl

5